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M. Lockwood: Energy and pitch-angle dispersions of LLBL/cusp ions seen at middle altitudes
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development of the form from a bowl to a V was noted
by Menietti and Burch (1988). Note that at the lower
edge of the ion Vs, all ions have come from the
reconnection site because they have the lowest energy
and thus longest flight time 7 at that pitch angle a,. As a
result, this edge is not dependent on the contour level,
but this is certainly not true of the upper edge of the V.
Thus the width of the V (in energy at any one pitch
angle) depends on the sensitivity of the instrument,
specifically the geometric factor and the one-count level.
As a result, the extent of the source region inferred from
the V will depend on the instrument. This point is
addressed further in the next section.

Comparison of Fig. 7 with observations shows that
the model reproduces well the observed ion Vs in this
spectrogram format. For example, Fig. 7 can be com-
pared with the second panel of Fig. 2 of Kremser et al.
(1995). In making this comparison, it must be remem-
bered that Fig. 7 has not been convolved with any
instrument response characteristics and many of the
features shown will be below the one-count level. In
particular, note that the J scale in Fig. 7 covers 12
decades, whereas the data presentation given by
Kremser et al. (1995) covers only 3.7. For this reason,
the low-flux features at the highest energies are not as
clear in the data as they are in this model. Nevertheless,
the data clearly reveal ions at higher energies than are
seen equatorwards of the cusp on closed field lines. The
bottom panel of Fig. 2 of Kremser et al: (1995) is from a
high-energy-ion instrument which detects ions of energy
up to about 100 keV, as in Fig. 7. These high-energy
ions are observed to share the same energy/time-of-
observation dispersion ramp as the cusp ions, as is also
predicted in Fig. 7. Furthermore, from the ratios of the

fluxes of different species, Kremser et al. (1995) find that
these higher-energy ions are of magnetospheric origin
and suggest that they are generated by interaction with
the magnetopause. This is confirmed to be the mecha-
nism in the modelling presented here.

Looking closely at the spin-angle distribution for
(&, —t,) = 500 s, it can be seen that a minimum is
starting to form at zero pitch angle, with peaks at larger
values. This is also seen in the data presented by
Kremser et al. (1995) and represents the evolution
towards upgoing, mirrored mantle ions, as discussed by
Rosenbauer et al. (1975).

Note that in Fig. 4, 5 and 7, the magnetospheric CPS
ions (sp) are always seen at energies below the time-of-
flight cut-off energy (which is defined by T = t, — ¢, and
so depends on the pitch angle and the time elapsed since
reconnection), whereas the injected sheath ions and
energised magnetospheric ions are simultaneously pres-
ent above this cut-off energy. This predicted continua-
tion of sp ions at energies below the injected
magnetosheath ions is a feature of all observations of
dispersed LLBL and cusp ions, at both middle and low
altitudes.

4 Injection locations of observed cusp and LLBL ions

It is instructive to return to the debate about where the
precipitating ions seen in the cusp region were injected
across the magnetopause. As was discussed in the
introduction, Menietti and Burch (1988) used the ion
Vs modelled in Fig. 7 to derive a spread of source
locations of about 1 Rg, whereas Lockwood and Smith
(1993) argued that the spread of ion energies seen in low-
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lon distribution function near ion edge and near X-line
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the field line tailward and the time of flight of the ions
from the magnetopause to the satellite.

In Fig. 4b, (¢, —t,) = 75 s and two ion populations
can be seen. The lower-energy population is a loss-cone
distribution of the sp ions (i.e. CPS) which were present
on closed field lines (#; — ¢, < 0) and have yet to be
influenced by the fact that the field line has been opened.
Note that it has been assumed here that equatorial
scattering has filled the loss cone corresponding to
mirror points in the opposite hemisphere; however, this
assumption was not necessary and a double loss cone
distribution could equally well have been used. At the
satellite, the loss of sp ions is first noted at the highest
energies as the lowest flight time sp ions fail to arrive: for
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Fig. 2. Ion distribution functions in the open
LLBL in the immediate vicinity of the recon-
nection X-line (d, = 0, t, = 0). The parallel
velocity is positive towards the Earth and is in
the Earth’s frame of reference: (fop) between
the interior wave (i in Fig. 1) and the ion edge
which is closer to the separatrix s; (bottom)
between the exterior and interior waves

(e and 1)
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(&, — t,) as low as 75s, only loss of ions with T <
(t; —t,) = 75 s could be noted and the fluxes of such
ions in the sp population is negligibly small. The
boundary in (V. V) phase space defined by
T = (t;, — t,) is here called the time-of-flight cut-off.
Below this cut-off only the sp ions from the closed field-
line region can be seen, above it only the populations
generated by the open magnetopause (t-sh, re-sp and ri-
sp) can be found. For reference with Fig. 3, the lower
cut-off energy of field-aligned ions is given by:

Eie(os = 0) = (m/2){s:/(t; — tO)}zv (5)
where s, is the distance along the field line from the X-
line to the altitude of the satellite, which is here 23.5 R.
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lon flight times as a function of velocity at satellite
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Fig. 4a. lon flight time from a point P, on the magnetopause to the
altitude of satellite, 7, colour coded (on a logarithmic scale) as a
function of the field-parallel and field-perpendicular ion velocities at
the satellite. In this example, P, is at the (subsolar) reconnection site

cusp, for example as revealed by the sequence shown in
Fig. 2 of Woch and Lundin (1992).

In cases such as that for (¢, —1¢,) = 200 s, the
magnetospheric (sp) ions below the cut-off appear to
belong to the same population as those magnetospheric
ions that have been reflected off the exterior wave (re-sp)
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(d, = 0, t, = 0). b Ion distribution functions at the satellite; the
elapsed time since reconnection (¢, — #,) is: b 75 s; ¢ 100 s; d 200 s; e
300 s; and f 500 s

and that are seen at energies above where transmitted
sheath (t-sh) ions dominate: these two populations (sp
and re-sp) could therefore be fitted with a single
Maxwellian (of higher temperature and density than
the sp population — cf. Fig. 3). This point is demon-
strated in Fig. 6, in which the J(E) spectrum for
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